Identification and Climatology of COLs near the Tropopause from two different kind of physical approaches

R. Nieto1,2 (nieto@uvigo.es), M. Sprenger3, H. Wernli4, R. Trigo2,5 and L. Gimeno
1Universidad de Vigo, Ourense, Spain; 2CGUL-IDL, University of Lisbon, Portugal; 3Institute for Atmospheric and Climate Science, ETH Zürich, Switzerland; 4Institute for Atmospheric Physics, University of Main, Germany; 5Universidade Lusofona, Departamento de Engenharias, Lisbon, Portugal.

Cut-off low pressure systems (COLs) are defined as closed lows in the upper troposphere that have become completely detached from the main westerly current.

COLs are important as a mechanism of stratosphere troposphere exchange (STE). In COLs, the tropopause is anomalously low, thus contributing to produce STE. The STE associated with COLs is essential to explain anomalous values of tropospheric ozone.

Here we present 3 upgraded climatologies of COLs developed by Nieto et al. (2005), hereafter NAL and by Wernli and Sprenger (2007), hereafter WS, and a comparison between the results, for the whole extratropical Northern hemisphere (from 20ºN to 70ºN) from January 1958 to December 2002.

We use reanalysis datasets available every 6-hours from NCAR-NCEP and ERA-40 from the ECMWF, checking the area of COL occurrence, seasonal and monthly cycle.

The first two climatologies are built from both reanalysis based on the conceptual model of COL developed by Nieto et al (2005) using geopotential, u-wind, and T from 200, 300 hPa onto a 2.5°x2.5° grid. The third climatology was developed using potential vorticity (PV) as the physical parameter of diagnosis following the previous methodology by Wernli and Sprenger (2007) using ERA-40. U-wind components, T and geopotential fields are onto a 1ºx1º grid. Potential temperature and PV have been calculated on the original hybrid model levels. Finally, the PV field was interpolated to a stack of isentropic levels from 300 to 350K, separated by 10K.


Mean seasonal PT (K) corresponding to geopotential fields at 200 and 300 hPa for the extratropical NH derived from NCAR-NCEP reanalysis. Main areas of COL occurrence are plotted over the latitude axis. Continuous black segments indicate the isentropic level where COLs are identified for different latitudes.

In general, the most appropriated isentropic levels to analyze each latitude band are: from 30ºN to 60ºN, 320 and 330 K; for latitudes lower than 40ºN, 340 K; and for latitudes higher than 40ºN, 310 K.

Comparison between seasonal COL climatologies:
Gray areas and black line denotes NAL climatologies, and symbols mark the longitudinal axes of main areas of occurrence from WS climatologies.

The higher the latitude of the COL region, the lower the isentropic level that is appropriate for the comparison.

Asian and North American Atlantic sectors: COLs at 310 & 320 K
European and North American Pacific areas: 330 and 340 K for all seasons with the exception of winter (310, 320, and 330 K)

In summary: for each season and for different areas, different isentropic levels must be used to obtain a good representation of the main areas of COL occurrence.

The two methodologies are complementary and each contributes to a better characterization of the physical properties of COLs.