Trends in, and influences on, the vertical structure and seasonal evolution of the Antarctic polar vortex

Joanna D. Haigh, Imperial College London, UK
Howard K. Roscoe, British Antarctic Survey, Cambridge, UK
Focus

- Seasonal evolution of Antarctic polar vortex: definition of final warming date

- Long-term variations in polar temperatures, SAM: role of polar ozone, influence of other factors (QBO, solar variability, volcanic aerosol, ENSO)
Data

• Radiosonde temperatures 100, 70, 50, 30 hPa: Halley (1957-2007), South Pole (1961-2007) (twice) daily (with gaps)

• NCEP Reanalysis: temperatures 700-30hPa 60-90°S average, monthly means 1979-2005

• SAM index, time series of weighting of 1st EOF of NCEP geopotential heights 20-90°S, monthly means 1979-2005

• ERA-40 operational analysis pressure velocity at 500h Pa zonal mean, monthly means 1958-2001
South Pole radiosonde ascents example 1999/2000

- 30 hPa
- Δ 50
- ◊ 70
- + 100

How to define the final warming date?
Black (2007): jet core zonal wind speed

All rely on thresholds – problem if in context of long term T trends?
Final warming date definition

- **Raw data**
- **1st derivative (of smoothed data)**
- **Smoothed**
- **2nd derivative**
- **Date of minimum**
Final warming dates

South Pole

Mean difference
30-100 hPa:

100 hPa
70
50
30

Ha 25.1 d (σ=10.8)
SP 23.4 d (σ=11.0)

3 Sep 2008
Final warming dates (comparison of stations)

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.86</td>
</tr>
<tr>
<td>70</td>
<td>0.91</td>
</tr>
<tr>
<td>50</td>
<td>0.88</td>
</tr>
<tr>
<td>30</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Multiple regression analysis: forcing indices
Regression results: de-seasonalised SAM index

bold: 5% signif
Labitzke (2004) correlation of 30hPa Z with solar activity

Multiple regression analysis: Solar*QBO index
Regression results (SAM): alternative indices
Regression results (SAM): alternative indices
Regression results: final warming dates from radiosonde data

<table>
<thead>
<tr>
<th>Pressure (hPa)</th>
<th>OMD</th>
<th>linear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Days (1998 cf pre-1980)</td>
<td>t-value</td>
</tr>
<tr>
<td>100</td>
<td>29</td>
<td>7.5</td>
</tr>
<tr>
<td>50</td>
<td>16</td>
<td>3.6</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>1.3</td>
</tr>
</tbody>
</table>

No other index produced significant results
Final warming dates:
monthly zonal mean NCEP temperatures 60-90°S

Mean 1979-2005

1st derivative
(K/month)

2nd derivative
(K/month/month)

date of minimum

SPARC 3 Sep 2008
Regression results:
monthly zonal mean NCEP temperatures 60-90°S

Contours: signal derived for given forcing index
Shading: 5,10, 20% significance levels
Bold lines: “final warming date” at high (dashed) and low (solid) value of index
Temperatures at high and low OMD states

Contours: temperature at high (dashed) and low (solid) value of index
Bold lines: “final warming dates”

Higher values of OMD result in later warming from middle stratosphere through to mid-troposphere
Regression results:
monthly zonal mean NCEP temperatures 60-90°S

Contours: signal derived for given forcing index
Shading: 5,10, 20% significance levels
Bold lines: “final warming date” at high (dashed) and low (solid) value of index
OMD signal in zonal mean pressure velocity (500 hPa)

Delay in Spring weakening

ω (Pa s\(^{-1}\))
Summary

• Simple definition of final warming date based on temporal evolution of temperature.
• Final warming dates show response to ozone recovery.
• Long-term trends more strongly related to stratospheric ozone depletion than to linear climate change.
• Stronger response to compound solar*QBO index than to these factors separately.
• Delay in final warming date due to ozone depletion (and also to solar*QBO) from mid-stratosphere to mid-troposphere:
 not downward propagation of an anomaly but delay in normal behaviour (but need to understand that!)