Cirrus clouds and ice supersaturated regions in global climate models

Ulrike Lohmann, Peter Spichtinger, Stephanie Heidt, Thomas Peter and Hermat Smit

ETH Zurich
Institute for Atmospheric and Climate Science

Bologna, 31.08.08
Different indirect aerosol effects

- **Cloud albedo effect (Twomey or first indirect effect):**
 More aerosols → more and smaller cloud droplets per given liquid water path → more reflection of solar radiation (Twomey, 1959)

- **Cloud lifetime effect (Albrecht or second indirect effect):**
 More smaller cloud droplets collide less efficiently → less drizzle → longer cloud lifetime → more reflection of solar radiation (Albrecht, 1989)

- **Aerosol effect on cirrus clouds:** Same shortwave effects as for water clouds but also impacts on longwave radiation
Annual mean cirrus cloud amount

Joos et al. (2008)
Trend in cirrus cloudiness?

Minnis et al. (2004)
Trend in cirrus cloudiness?

Motivation

Cirrus formation in GCMs
Het. freezing
New studies
Conclusions

Cirrus in ECHAM5

Trend in cirrus cloudiness?

![Graph showing trends in cirrus cloudiness over different regions](image)

Fig. 3. Annual variation of CC over (a) five land regions [WASIA, WEUR, LOR, ERA, and United States (USA)] and (b) ocean regions (NA, NP, and OOR).

Minnis et al. (2004)

→ better understanding of cirrus clouds is needed
Homogeneous freezing of supercooled aerosols

- freezing rates are well-established; field data support lab results
- important ice formation mechanism in the UT (and LS)
- role of heterogeneous processes unclear

First step in the development of a physically-based parameterization of cirrus formation.
Motivation
Cirrus formation in GCMs
Het. freezing
New studies
Conclusions

Tompkins et al. (2007)
Governing equations

\[
\frac{dS_i}{dt} = a_1 S_i w - (a_2 + a_3 S_i) R_i \tag{1}
\]

\[
R_i = \frac{\rho_i}{m_w} \int_{-\infty}^{t} dt_0 \hat{n}_i(t_0) 4\pi r_i^2(t_0, t) \frac{dr_i}{dt}(t_0, t) \tag{2}
\]

\[
\hat{n}_i = \int_{r_s}^{\infty} dr_0 \frac{4\pi}{3} r_0^3 J \frac{dn}{dr_0}, \quad n_i = \int_{r_s}^{\infty} dr_0 \frac{dn}{dr_0} \tag{3}
\]

\[
\frac{dr_i}{dt} = \frac{b_1 (S_i - 1)}{1 + b_2 r_i} \tag{4}
\]

Solution strategy
- choose suitable ansatz for nucleation pulse
- evaluate (1) at the time where S_i reaches a peak

Two distinct timescales

\[
\tau_f = \left[c \left| \frac{\partial \ln(J)}{\partial T} \right| \frac{dT}{dt} \right]^{-1} \quad \tau_g = \left[\frac{b_1 (S_{cr} - 1)/r_0}{1 + b_2 r_0} \right]^{-1}
\]

freezing ($\propto 1/w$) \quad \text{initial growth} ($\propto 1/n_{sat}$)
Governing equations

Solution character

\[\tau_f \gg \tau_g : \text{fast growth (high } T, \text{ low } w, \text{ small } r_0) \text{ – the system loses memory about initial conditions} \]

\[\tau_f \ll \tau_g : \text{slow growth (low } T, \text{ high } w, \text{ large } r_0) \text{ – vapor depletion controlled by frz haze distribution} \]
Homogeneous freezing including size effects

Figure: Parcel model results (symbols); parameterization (lines)

Kärcher and Lohmann (2002)
Homogeneous freezing in climate models

- Abandon the saturation adjustment scheme and allow supersaturation with respect to ice
- Solve the depositional growth equation:

\[Q_{dep} = 4\pi CA_T f_{Re} (S_i - 1) N_i \] \hspace{1cm} (1)

where \(A_T \) = thermodynamic term, \(C \) = capacitance, \(f_{Re} \) = ventilation factor

\[N_i^{HOM} \propto w^{3/2} N_{si}^{-1/2} (T) \] \hspace{1cm} (2)

and \(w = \bar{w} + 0.7\sqrt{TKE} \)
Validation of vertical velocity

NH data: 26.2 cm/s
ECMWF (synoptic): 1.3 cm/s
ECHAM (large-scale): 0.9 cm/s
ECHAM: 7.8 cm/s

Kärcher and Ström (2003)
Validation of supersaturation

Tompkins et al. (2007)
Motivation

Cirrus formation in GCMs

Het. freezing

New studies

Conclusions

Liu et al. (2007)
Heterogeneous vs. homogeneous freezing

- Motivation
- Cirrus formation in GCMs
- Het. freezing
- New studies
- Conclusions

Cziczo et al. (2004)
Homogeneous vs. heterogeneous freezing

Figure: Grey line: homogeneous freezing; black lines: competition heterogeneous vs. homogeneous freezing

Kärcher et al. (2006)
Evidence of crystalline ammonium sulfate as ice nucleus?

Abbatt et al. (2006)
Effects on radiation

Figure: Annual zonal mean ice water path and ice crystal number for simulations HOM, AS1, AS10, AS100. Differences of the short- and longwave cloud forcing vs. HOM: AS1, AS10, AS100

Abbatt et al. (2006)
Model set-up in the ECHAM5 studies

- T42 horizontal resolution (∼ 2.8° x 2.8°), 19 vertical levels
- 5 year-simulations after a 3-months spin-up
- Different simulations:
 - ECHAM5-hom: Reference simulation with ECHAM5 employing only homogeneous freezing and using $\alpha = 0.5$ for deposition and sublimation
 - ECHAM5-het: As ECHAM5-hom, but with heterogeneous immersion freezing instead of homogeneous freezing. $N_{IN} = \text{number of immersed dust nuclei}$ (Hoose et al., 2008)
 - ECHAM5-homhet: heterogeneous freezing for $N_{IN} > 1 \text{ l}^{-1}$, homogeneous freezing otherwise
 - ECHAM5-alpha: As ECHAM5-hom, but with α reduced to 0.006 (Magee et al., 2006)
Solution droplets versus immersed dust nuclei

Motivation
- Cirrus formation in GCMs
- Het. freezing
- New studies

Solution droplets \([\text{cm}^{-3}] \) ECHAM5–hom

Immersed dust nuclei \([\text{cm}^{-3}] \) ECHAM5–het

Bologna, 31.08.08
Importance of α

Motivation

Cirrus formation in GCMs

Het. freezing

New studies

Conclusions

Cirrus in ECHAM5

Magee et al. (2006)
Zonal mean results

- Ice water path ($0.7 < \tau < 3.8$) [g m$^{-2}$]
- Effective ice crystal radius [μm]
- Ice crystal number conc. [10^{10} m$^{-2}$]
- Total cloud cover [%]
- Shortwave cloud forcing [W m$^{-2}$]
- Longwave cloud forcing [W m$^{-2}$]

Motivation
Cirrus formation in GCMs
Het. freezing
New studies
Conclusions
Frequency distribution of ice supersaturation in NH midlatitudes and tropics

Motivation

Cirrus formation in GCMs
Het. freezing
New studies
Conclusions

Observations from MOZAIC and MLS
Supersaturated regions

Motivation
Cirrus formation in GCMs
Het. freezing
New studies
Conclusions

ISSR 147 hPa (MLS)
ISSR 215 hPa (MLS)

ISSR <200 hPa ECHAM5–hom
ISSR >200 hPa ECHAM5–hom

ISSR <200 hPa ECHAM5–het
ISSR >200 hPa ECHAM5–het

ISSR <200 hPa ECHAM5–homhet
ISSR >200 hPa ECHAM5–homhet

ISSR <200 hPa ECHAM5–alpha
ISSR >200 hPa ECHAM5–alpha

1 2 3 5 7 10 15 20 30 50 %
Table: Global annual mean ice water path (IWP), vertically integrated ice crystal number (N_i), total cloud cover (CC) and shortwave (SCF) and longwave (LCF) cloud forcing at the top-of-the-atmosphere.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>ECH5-hom</th>
<th>ECH5-het</th>
<th>ECH5-homhet</th>
<th>ECH5-alpha</th>
<th>OBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IWP, g m$^{-2}$</td>
<td>13.8</td>
<td>14.9</td>
<td>14.8</td>
<td>8.6</td>
<td>25.2</td>
</tr>
<tr>
<td>N_i, 1010 m$^{-2}$</td>
<td>0.28</td>
<td>0.17</td>
<td>0.18</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>TCC, %</td>
<td>66.0</td>
<td>64.1</td>
<td>64.3</td>
<td>71.2</td>
<td>62-67</td>
</tr>
<tr>
<td>SCF, W m$^{-2}$</td>
<td>-52.2</td>
<td>-50.7</td>
<td>-51.1</td>
<td>-68.4</td>
<td>-47 to -50</td>
</tr>
<tr>
<td>LCF, W m$^{-2}$</td>
<td>27.1</td>
<td>24.5</td>
<td>25.0</td>
<td>47.4</td>
<td>22-30</td>
</tr>
</tbody>
</table>
Conclusions

▶ Introducing a cirrus scheme (i.e. abandoning saturation adjustment schemes) into GCMs reproduces the observed frequency of ice supersaturation in different GCMs

▶ Anthropogenic ice nuclei (soot, crystalline ammonium sulfate, maybe organics) could lead to an inverse cloud albedo effect in cirrus clouds

▶ Decreasing the mass accommodation coefficient α to 0.006 enhances the ice crystal number by a factor of 25. Comparisons with observations suggest that such a low value of α is not appropriate for a GCM.

▶ There is some support for some limited heterogeneous freezing, possibly due to immersed mineral dust particles, in addition to a pronounced homogeneous freezing pathway.